254 research outputs found

    In vivo therapeutic efficacy of frog skin-derived peptides against Pseudomonas aeruginosa-induced pulmonary infection

    Get PDF
    Pseudomonas aeruginosa is an opportunistic and frequently drug-resistant pulmonary pathogen especially in cystic fibrosis sufferers. Recently, the frog skin-derived antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c were found to possess potent in vitro antipseudomonal activity. Here, they were first shown to preserve the barrier integrity of airway epithelial cells better than the human AMP LL-37. Furthermore, Esc(1-21)-1c was more efficacious than Esc(1-21) and LL-37 in protecting host from pulmonary bacterial infection after a single intra-tracheal instillation at a very low dosage of 0.1 mg/kg. The protection was evidenced by 2-log reduction of lung bacterial burden and was accompanied by less leukocytes recruitment and attenuated inflammatory response. In addition, the diastereomer was more efficient in reducing the systemic dissemination of bacterial cells. Importantly, in contrast to what reported for other AMPs, the peptide was administered at 2 hours after bacterial challenge to better reflect the real life infectious conditions. To the best of our knowledge, this is also the first study investigating the effect of AMPs on airway-epithelia associated genes upon administration to infected lungs. Overall, our data highly support advanced preclinical studies for the development of Esc(1-21)-1c as an efficacious therapeutic alternative against pulmonary P. aeruginosa infection

    Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2. amino acids substitution and conjugation to nanoparticles

    Get PDF
    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance

    Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic

    Get PDF
    The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains

    The frog skin-derived antimicrobial peptide esculentin-1a(1-21)nh2 promotes the migration of human hacat keratinocytes in an egf receptor-dependent manner: a novel promoter of human skin wound healing?

    Get PDF
    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers

    Mechanisms of biofilm inhibition and degradation by antimicrobial peptides

    Get PDF
    Many bacteria live as biofilms to cope with unfavourable surroundings. Biofilms start from (i) a planktonic stage, (ii) initial adhesion to surfaces and (iii) formation of sessile micro-colonies that secrete extracellular polymeric substance (EPS), leading to bacterial resistance to antibiotics. Antimicrobial peptides (AMPs) are extensively studied with regard to planktonic bacteria but much less so with regard to biofilm formation. In the present study, we investigated how the above three steps are affected by the properties of the AMPs using a series of peptides composed of six lysines and nine leucines, which differ in their sequences and hence their biophysical properties. Treatment with bactericidal peptides at non-inhibitory concentrations resulted in reduced biofilm growth, for some starting from 25 nM which is 0.2 and 0.4% of their minimum inhibitory concentration (MIC 6.3 and 12.5 μM, respectively), continuing in a dose-dependent manner. We suggest that reduced bacterial adhesion to surfaces and decreased biofilm growth are due to the peptide's ability to coat either the biomaterial surface or the bacterium itself. Degradation of established biofilms by bactericidal and non-bactericidal peptides, within 1 h of incubation, occurs by either killing of embedded bacteria or detachment of live ones. In addition to shedding light on the mechanism of biofilm inhibition and degradation, these data may assist in the design of anti-biofilm AMPs

    Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs

    Get PDF
    Naturally occurring antimicrobial peptides (AMPs) hold promise as future therapeutics against multidrug resistant microorganisms. Recently, we have discovered that a derivative of the frog skin AMP esculentin-1a, Esc(1-21), is highly potent against both free living and biofilm forms of the bacterial pathogen Pseudomonas aeruginosa. However, bringing AMPs into clinics requires to overcome their low stability, high toxicity and inefficient delivery to the target site at high concentrations. Importantly, peptide conjugation to gold nanoparticles (AuNPs), which are among the most applied inorganic nanocarriers in biomedical sciences, represents a valuable strategy to solve these problems. Here we report that covalent conjugation of Esc(1-21) to soluble AuNPs AuNPs@Esc(1-21)] via a poly(ethylene glycol) linker increased by ~15-fold the activity of the free peptide against the motile and sessile forms of P. aeruginosa without being toxic to human keratinocytes. Furthermore, AuNPs@Esc(1-21) resulted to be significantly more resistant to proteolytic digestion and to disintegrate the bacterial membrane at very low concentration (5 nM). Finally, we demonstrated for the first time the capability of peptide-coated AuNPs to display a wound healing activity on a keratinocytes monolayer. Overall, these findings suggest that our engineered AuNPs can serve as attractive novel biological-derived material for topical treatment of epithelial infections and healing of the injured tissue. Statement of Significance Despite conjugation of AMPs to AuNPs represents a worthwhile solution to face some limitations for their development as new therapeutics, only a very limited number of studies is available on peptide-coated AuNPs. Importantly, this is the first report showing that a covalent binding of a linear AMP via a poly(ethylene glycol) linker to AuNPs highly enhances antipseudomonal activity, preserving the same mode of action of the free peptide, without being harmful. Furthermore, AuNPs@Esc(1-21) are expected to accelerate recovery of an injured skin layer. All together, these findings suggest our peptide-coated AuNPs as attractive novel nanoscale formulation to treat bacterial infections and to heal the injured tissue

    KDEON WK-11: A short antipseudomonal peptide with promising potential

    Get PDF
    The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 mu M, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent

    Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry

    Get PDF
    Antimicrobial peptides (AMPs) represent a promising classof compoundsto fight antibiotic-resistant infections. In most cases, they killbacteria by making their membrane permeable and therefore exhibitlow propensity to induce bacterial resistance. In addition, they areoften selective, killing bacteria at concentrations lower than thoseat which they are toxic to the host. However, clinical applicationsof AMPs are hindered by a limited understanding of their interactionswith bacteria and human cells. Standard susceptibility testing methodsare based on the analysis of the growth of a bacterial populationand therefore require several hours. Moreover, different assays arerequired to assess the toxicity to host cells. In this work, we proposethe use of microfluidic impedance cytometry to explore the actionof AMPs on both bacteria and host cells in a rapid manner and withsingle-cell resolution. Impedance measurements are particularly well-suitedto detect the effects of AMPs on bacteria, due to the fact that themechanism of action involves perturbation of the permeability of cellmembranes. We show that the electrical signatures of Bacillus megaterium cells and human red blood cells(RBCs) reflect the action of a representative antimicrobial peptide,DNS-PMAP23. In particular, the impedance phase at high frequency (e.g.,11 or 20 MHz) is a reliable label-free metric for monitoring DNS-PMAP23bactericidal activity and toxicity to RBCs. The impedance-based characterizationis validated by comparison with standard antibacterial activity assaysand absorbance-based hemolytic activity assays. Furthermore, we demonstratethe applicability of the technique to a mixed sample of B. megaterium cells and RBCs, which paves the wayto study AMP selectivity for bacterial versus eukaryotic cells inthe presence of both cell types

    Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms?

    Get PDF
    Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics

    Pulmonary Safety Profile of Esc Peptides and Esc-Peptide-Loaded Poly(lactide-co-glycolide) Nanoparticles: A Promising Therapeutic Approach for Local Treatment of Lung Infectious Diseases

    Get PDF
    In recent years, we have discovered Esc(1-21) and its diastereomer (Esc peptides) as valuable candidates for the treatment of Pseudomonas lung infection, especially in patients with cystic fibrosis (CF). Furthermore, engineered poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were revealed to be a promising pulmonary delivery system of antimicrobial peptides. However, the "ad hoc" development of novel therapeutics requires consideration of their stability, tolerability, and safety. Hence, by means of electrophysiology experiments and preclinical studies on healthy mice, we demonstrated that neither Esc peptides or Esc-peptide-loaded PLGA NPs significantly affect the integrity of the lung epithelium, nor change the global gene expression profile of lungs of treated animals compared to those of vehicle-treated animals. Noteworthy, the Esc diastereomer endowed with the highest antimicrobial activity did not provoke any pulmonary pro-inflammatory response, even at a concentration 15-fold higher than the efficacy dosage 24 h after administration in the free or encapsulated form. The therapeutic index was ≥70, and the peptide was found to remain available in the bronchoalveolar lavage of mice, after two days of incubation. Overall, these studies should open an avenue for a new up-and-coming pharmacological approach, likely based on inhalable peptide-loaded NPs, to address CF lung disease
    • …
    corecore